Smooth Geometric Evolutions of Hypersurfaces
نویسنده
چکیده
We consider the gradient flow associated to the following functionals Fm(φ) = ∫ M 1 + |∇ν| dμ . The functionals are defined on hypersurfaces immersed in R via a map φ : M → R, where M is a smooth closed and connected n–dimensional manifold without boundary. Here μ and ∇ are respectively the canonical measure and the Levi–Civita connection on the Riemannian manifold (M, g), where the metric g is obtained by pulling back on M the usual metric of R with the map φ. The symbol ∇ denotes the m–th iterated covariant derivative and ν is a unit normal local vector field to the hypersurface. Our main result is that if the order of derivation m ∈ N is strictly larger than the integer part of n/2 then singularities in finite time cannot occur during the evolution. These geometric functionals are related to similar ones proposed by Ennio De Giorgi, who conjectured for them an analogous regularity result. In the final section we discuss the original conjecture of De Giorgi and some related problems.
منابع مشابه
Interpolation and Sampling Hypersurfaces for the Bargmann-fock Space in Higher Dimensions
ABSTRACT. We study those smooth complex hypersurfaces W in C having the property that all holomorphic functions of finite weighted L norm on W extend to entire functions with finite weighted L norm. Such hypersurfaces are called interpolation hypersurfaces. We also examine the dual problem of finding all sampling hypersurfaces, i.e., smooth hypersurfaces W in C such that any entire function wit...
متن کاملMaximum Principles for Null Hypersurfaces and Null Splitting Theorems
The geometric maximum principle for smooth (spacelike) hypersurfaces, which is a consequence of Alexandrov’s [1] strong maximum for second order quasilinear elliptic operators, is a basic tool in Riemannian and Lorentzian geometry. In [2], extending earlier work of Eschenburg [7], a version of the geometric maximum principle in the Lorentzian setting was obtained for rough (C) spacelike hypersu...
متن کاملA note on the extendability of compact hypersurfaces to smooth Cauchy hypersurfaces
Given a globally hyperbolic spacetime, the existence of a (smooth) spacelike Cauchy hypersurface S has been proven recently. Here, we prove that any acausal spacelike compact submanifold with boundary can be smoothly extended to a spacelike Cauchy hypersurface. Apart from the interest as a purely geometric question (applicable to the Cauchy problem in General Relativity), the result is motivate...
متن کامل$L_k$-biharmonic spacelike hypersurfaces in Minkowski $4$-space $mathbb{E}_1^4$
Biharmonic surfaces in Euclidean space $mathbb{E}^3$ are firstly studied from a differential geometric point of view by Bang-Yen Chen, who showed that the only biharmonic surfaces are minimal ones. A surface $x : M^2rightarrowmathbb{E}^{3}$ is called biharmonic if $Delta^2x=0$, where $Delta$ is the Laplace operator of $M^2$. We study the $L_k$-biharmonic spacelike hypersurfaces in the $4$-dimen...
متن کاملRational Maps between Quasilinear Hypersurfaces
We prove analogues of several well-known results concerning rational maps between quadrics for the class of so-called quasilinear p-hypersurfaces. These hypersurfaces are nowhere smooth over the base field, so many of the geometric methods which have been successfully applied to the study of projective homogeneous varieties over fields cannot be used. We are therefore forced to take an alternat...
متن کامل